STM32F10x Standard Peripherals Library
3.5.0
|
00001 00022 /* Includes ------------------------------------------------------------------*/ 00023 #include "stm32f10x_rcc.h" 00024 00046 /* ------------ RCC registers bit address in the alias region ----------- */ 00047 #define RCC_OFFSET (RCC_BASE - PERIPH_BASE) 00048 00049 /* --- CR Register ---*/ 00050 00051 /* Alias word address of HSION bit */ 00052 #define CR_OFFSET (RCC_OFFSET + 0x00) 00053 #define HSION_BitNumber 0x00 00054 #define CR_HSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4)) 00055 00056 /* Alias word address of PLLON bit */ 00057 #define PLLON_BitNumber 0x18 00058 #define CR_PLLON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4)) 00059 00060 #ifdef STM32F10X_CL 00061 /* Alias word address of PLL2ON bit */ 00062 #define PLL2ON_BitNumber 0x1A 00063 #define CR_PLL2ON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLL2ON_BitNumber * 4)) 00064 00065 /* Alias word address of PLL3ON bit */ 00066 #define PLL3ON_BitNumber 0x1C 00067 #define CR_PLL3ON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLL3ON_BitNumber * 4)) 00068 #endif /* STM32F10X_CL */ 00069 00070 /* Alias word address of CSSON bit */ 00071 #define CSSON_BitNumber 0x13 00072 #define CR_CSSON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4)) 00073 00074 /* --- CFGR Register ---*/ 00075 00076 /* Alias word address of USBPRE bit */ 00077 #define CFGR_OFFSET (RCC_OFFSET + 0x04) 00078 00079 #ifndef STM32F10X_CL 00080 #define USBPRE_BitNumber 0x16 00081 #define CFGR_USBPRE_BB (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (USBPRE_BitNumber * 4)) 00082 #else 00083 #define OTGFSPRE_BitNumber 0x16 00084 #define CFGR_OTGFSPRE_BB (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (OTGFSPRE_BitNumber * 4)) 00085 #endif /* STM32F10X_CL */ 00086 00087 /* --- BDCR Register ---*/ 00088 00089 /* Alias word address of RTCEN bit */ 00090 #define BDCR_OFFSET (RCC_OFFSET + 0x20) 00091 #define RTCEN_BitNumber 0x0F 00092 #define BDCR_RTCEN_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (RTCEN_BitNumber * 4)) 00093 00094 /* Alias word address of BDRST bit */ 00095 #define BDRST_BitNumber 0x10 00096 #define BDCR_BDRST_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (BDRST_BitNumber * 4)) 00097 00098 /* --- CSR Register ---*/ 00099 00100 /* Alias word address of LSION bit */ 00101 #define CSR_OFFSET (RCC_OFFSET + 0x24) 00102 #define LSION_BitNumber 0x00 00103 #define CSR_LSION_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4)) 00104 00105 #ifdef STM32F10X_CL 00106 /* --- CFGR2 Register ---*/ 00107 00108 /* Alias word address of I2S2SRC bit */ 00109 #define CFGR2_OFFSET (RCC_OFFSET + 0x2C) 00110 #define I2S2SRC_BitNumber 0x11 00111 #define CFGR2_I2S2SRC_BB (PERIPH_BB_BASE + (CFGR2_OFFSET * 32) + (I2S2SRC_BitNumber * 4)) 00112 00113 /* Alias word address of I2S3SRC bit */ 00114 #define I2S3SRC_BitNumber 0x12 00115 #define CFGR2_I2S3SRC_BB (PERIPH_BB_BASE + (CFGR2_OFFSET * 32) + (I2S3SRC_BitNumber * 4)) 00116 #endif /* STM32F10X_CL */ 00117 00118 /* ---------------------- RCC registers bit mask ------------------------ */ 00119 00120 /* CR register bit mask */ 00121 #define CR_HSEBYP_Reset ((uint32_t)0xFFFBFFFF) 00122 #define CR_HSEBYP_Set ((uint32_t)0x00040000) 00123 #define CR_HSEON_Reset ((uint32_t)0xFFFEFFFF) 00124 #define CR_HSEON_Set ((uint32_t)0x00010000) 00125 #define CR_HSITRIM_Mask ((uint32_t)0xFFFFFF07) 00126 00127 /* CFGR register bit mask */ 00128 #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) || defined (STM32F10X_CL) 00129 #define CFGR_PLL_Mask ((uint32_t)0xFFC2FFFF) 00130 #else 00131 #define CFGR_PLL_Mask ((uint32_t)0xFFC0FFFF) 00132 #endif /* STM32F10X_CL */ 00133 00134 #define CFGR_PLLMull_Mask ((uint32_t)0x003C0000) 00135 #define CFGR_PLLSRC_Mask ((uint32_t)0x00010000) 00136 #define CFGR_PLLXTPRE_Mask ((uint32_t)0x00020000) 00137 #define CFGR_SWS_Mask ((uint32_t)0x0000000C) 00138 #define CFGR_SW_Mask ((uint32_t)0xFFFFFFFC) 00139 #define CFGR_HPRE_Reset_Mask ((uint32_t)0xFFFFFF0F) 00140 #define CFGR_HPRE_Set_Mask ((uint32_t)0x000000F0) 00141 #define CFGR_PPRE1_Reset_Mask ((uint32_t)0xFFFFF8FF) 00142 #define CFGR_PPRE1_Set_Mask ((uint32_t)0x00000700) 00143 #define CFGR_PPRE2_Reset_Mask ((uint32_t)0xFFFFC7FF) 00144 #define CFGR_PPRE2_Set_Mask ((uint32_t)0x00003800) 00145 #define CFGR_ADCPRE_Reset_Mask ((uint32_t)0xFFFF3FFF) 00146 #define CFGR_ADCPRE_Set_Mask ((uint32_t)0x0000C000) 00147 00148 /* CSR register bit mask */ 00149 #define CSR_RMVF_Set ((uint32_t)0x01000000) 00150 00151 #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) || defined (STM32F10X_CL) 00152 /* CFGR2 register bit mask */ 00153 #define CFGR2_PREDIV1SRC ((uint32_t)0x00010000) 00154 #define CFGR2_PREDIV1 ((uint32_t)0x0000000F) 00155 #endif 00156 #ifdef STM32F10X_CL 00157 #define CFGR2_PREDIV2 ((uint32_t)0x000000F0) 00158 #define CFGR2_PLL2MUL ((uint32_t)0x00000F00) 00159 #define CFGR2_PLL3MUL ((uint32_t)0x0000F000) 00160 #endif /* STM32F10X_CL */ 00161 00162 /* RCC Flag Mask */ 00163 #define FLAG_Mask ((uint8_t)0x1F) 00164 00165 /* CIR register byte 2 (Bits[15:8]) base address */ 00166 #define CIR_BYTE2_ADDRESS ((uint32_t)0x40021009) 00167 00168 /* CIR register byte 3 (Bits[23:16]) base address */ 00169 #define CIR_BYTE3_ADDRESS ((uint32_t)0x4002100A) 00170 00171 /* CFGR register byte 4 (Bits[31:24]) base address */ 00172 #define CFGR_BYTE4_ADDRESS ((uint32_t)0x40021007) 00173 00174 /* BDCR register base address */ 00175 #define BDCR_ADDRESS (PERIPH_BASE + BDCR_OFFSET) 00176 00193 static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9}; 00194 static __I uint8_t ADCPrescTable[4] = {2, 4, 6, 8}; 00195 00217 void RCC_DeInit(void) 00218 { 00219 /* Set HSION bit */ 00220 RCC->CR |= (uint32_t)0x00000001; 00221 00222 /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ 00223 #ifndef STM32F10X_CL 00224 RCC->CFGR &= (uint32_t)0xF8FF0000; 00225 #else 00226 RCC->CFGR &= (uint32_t)0xF0FF0000; 00227 #endif /* STM32F10X_CL */ 00228 00229 /* Reset HSEON, CSSON and PLLON bits */ 00230 RCC->CR &= (uint32_t)0xFEF6FFFF; 00231 00232 /* Reset HSEBYP bit */ 00233 RCC->CR &= (uint32_t)0xFFFBFFFF; 00234 00235 /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ 00236 RCC->CFGR &= (uint32_t)0xFF80FFFF; 00237 00238 #ifdef STM32F10X_CL 00239 /* Reset PLL2ON and PLL3ON bits */ 00240 RCC->CR &= (uint32_t)0xEBFFFFFF; 00241 00242 /* Disable all interrupts and clear pending bits */ 00243 RCC->CIR = 0x00FF0000; 00244 00245 /* Reset CFGR2 register */ 00246 RCC->CFGR2 = 0x00000000; 00247 #elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) 00248 /* Disable all interrupts and clear pending bits */ 00249 RCC->CIR = 0x009F0000; 00250 00251 /* Reset CFGR2 register */ 00252 RCC->CFGR2 = 0x00000000; 00253 #else 00254 /* Disable all interrupts and clear pending bits */ 00255 RCC->CIR = 0x009F0000; 00256 #endif /* STM32F10X_CL */ 00257 00258 } 00259 00270 void RCC_HSEConfig(uint32_t RCC_HSE) 00271 { 00272 /* Check the parameters */ 00273 assert_param(IS_RCC_HSE(RCC_HSE)); 00274 /* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/ 00275 /* Reset HSEON bit */ 00276 RCC->CR &= CR_HSEON_Reset; 00277 /* Reset HSEBYP bit */ 00278 RCC->CR &= CR_HSEBYP_Reset; 00279 /* Configure HSE (RCC_HSE_OFF is already covered by the code section above) */ 00280 switch(RCC_HSE) 00281 { 00282 case RCC_HSE_ON: 00283 /* Set HSEON bit */ 00284 RCC->CR |= CR_HSEON_Set; 00285 break; 00286 00287 case RCC_HSE_Bypass: 00288 /* Set HSEBYP and HSEON bits */ 00289 RCC->CR |= CR_HSEBYP_Set | CR_HSEON_Set; 00290 break; 00291 00292 default: 00293 break; 00294 } 00295 } 00296 00304 ErrorStatus RCC_WaitForHSEStartUp(void) 00305 { 00306 __IO uint32_t StartUpCounter = 0; 00307 ErrorStatus status = ERROR; 00308 FlagStatus HSEStatus = RESET; 00309 00310 /* Wait till HSE is ready and if Time out is reached exit */ 00311 do 00312 { 00313 HSEStatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY); 00314 StartUpCounter++; 00315 } while((StartUpCounter != HSE_STARTUP_TIMEOUT) && (HSEStatus == RESET)); 00316 00317 if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET) 00318 { 00319 status = SUCCESS; 00320 } 00321 else 00322 { 00323 status = ERROR; 00324 } 00325 return (status); 00326 } 00327 00334 void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue) 00335 { 00336 uint32_t tmpreg = 0; 00337 /* Check the parameters */ 00338 assert_param(IS_RCC_CALIBRATION_VALUE(HSICalibrationValue)); 00339 tmpreg = RCC->CR; 00340 /* Clear HSITRIM[4:0] bits */ 00341 tmpreg &= CR_HSITRIM_Mask; 00342 /* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */ 00343 tmpreg |= (uint32_t)HSICalibrationValue << 3; 00344 /* Store the new value */ 00345 RCC->CR = tmpreg; 00346 } 00347 00354 void RCC_HSICmd(FunctionalState NewState) 00355 { 00356 /* Check the parameters */ 00357 assert_param(IS_FUNCTIONAL_STATE(NewState)); 00358 *(__IO uint32_t *) CR_HSION_BB = (uint32_t)NewState; 00359 } 00360 00378 void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t RCC_PLLMul) 00379 { 00380 uint32_t tmpreg = 0; 00381 00382 /* Check the parameters */ 00383 assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource)); 00384 assert_param(IS_RCC_PLL_MUL(RCC_PLLMul)); 00385 00386 tmpreg = RCC->CFGR; 00387 /* Clear PLLSRC, PLLXTPRE and PLLMUL[3:0] bits */ 00388 tmpreg &= CFGR_PLL_Mask; 00389 /* Set the PLL configuration bits */ 00390 tmpreg |= RCC_PLLSource | RCC_PLLMul; 00391 /* Store the new value */ 00392 RCC->CFGR = tmpreg; 00393 } 00394 00401 void RCC_PLLCmd(FunctionalState NewState) 00402 { 00403 /* Check the parameters */ 00404 assert_param(IS_FUNCTIONAL_STATE(NewState)); 00405 00406 *(__IO uint32_t *) CR_PLLON_BB = (uint32_t)NewState; 00407 } 00408 00409 #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) || defined (STM32F10X_CL) 00410 00426 void RCC_PREDIV1Config(uint32_t RCC_PREDIV1_Source, uint32_t RCC_PREDIV1_Div) 00427 { 00428 uint32_t tmpreg = 0; 00429 00430 /* Check the parameters */ 00431 assert_param(IS_RCC_PREDIV1_SOURCE(RCC_PREDIV1_Source)); 00432 assert_param(IS_RCC_PREDIV1(RCC_PREDIV1_Div)); 00433 00434 tmpreg = RCC->CFGR2; 00435 /* Clear PREDIV1[3:0] and PREDIV1SRC bits */ 00436 tmpreg &= ~(CFGR2_PREDIV1 | CFGR2_PREDIV1SRC); 00437 /* Set the PREDIV1 clock source and division factor */ 00438 tmpreg |= RCC_PREDIV1_Source | RCC_PREDIV1_Div ; 00439 /* Store the new value */ 00440 RCC->CFGR2 = tmpreg; 00441 } 00442 #endif 00443 00444 #ifdef STM32F10X_CL 00445 00454 void RCC_PREDIV2Config(uint32_t RCC_PREDIV2_Div) 00455 { 00456 uint32_t tmpreg = 0; 00457 00458 /* Check the parameters */ 00459 assert_param(IS_RCC_PREDIV2(RCC_PREDIV2_Div)); 00460 00461 tmpreg = RCC->CFGR2; 00462 /* Clear PREDIV2[3:0] bits */ 00463 tmpreg &= ~CFGR2_PREDIV2; 00464 /* Set the PREDIV2 division factor */ 00465 tmpreg |= RCC_PREDIV2_Div; 00466 /* Store the new value */ 00467 RCC->CFGR2 = tmpreg; 00468 } 00469 00479 void RCC_PLL2Config(uint32_t RCC_PLL2Mul) 00480 { 00481 uint32_t tmpreg = 0; 00482 00483 /* Check the parameters */ 00484 assert_param(IS_RCC_PLL2_MUL(RCC_PLL2Mul)); 00485 00486 tmpreg = RCC->CFGR2; 00487 /* Clear PLL2Mul[3:0] bits */ 00488 tmpreg &= ~CFGR2_PLL2MUL; 00489 /* Set the PLL2 configuration bits */ 00490 tmpreg |= RCC_PLL2Mul; 00491 /* Store the new value */ 00492 RCC->CFGR2 = tmpreg; 00493 } 00494 00495 00505 void RCC_PLL2Cmd(FunctionalState NewState) 00506 { 00507 /* Check the parameters */ 00508 assert_param(IS_FUNCTIONAL_STATE(NewState)); 00509 00510 *(__IO uint32_t *) CR_PLL2ON_BB = (uint32_t)NewState; 00511 } 00512 00513 00523 void RCC_PLL3Config(uint32_t RCC_PLL3Mul) 00524 { 00525 uint32_t tmpreg = 0; 00526 00527 /* Check the parameters */ 00528 assert_param(IS_RCC_PLL3_MUL(RCC_PLL3Mul)); 00529 00530 tmpreg = RCC->CFGR2; 00531 /* Clear PLL3Mul[3:0] bits */ 00532 tmpreg &= ~CFGR2_PLL3MUL; 00533 /* Set the PLL3 configuration bits */ 00534 tmpreg |= RCC_PLL3Mul; 00535 /* Store the new value */ 00536 RCC->CFGR2 = tmpreg; 00537 } 00538 00539 00546 void RCC_PLL3Cmd(FunctionalState NewState) 00547 { 00548 /* Check the parameters */ 00549 00550 assert_param(IS_FUNCTIONAL_STATE(NewState)); 00551 *(__IO uint32_t *) CR_PLL3ON_BB = (uint32_t)NewState; 00552 } 00553 #endif /* STM32F10X_CL */ 00554 00564 void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource) 00565 { 00566 uint32_t tmpreg = 0; 00567 /* Check the parameters */ 00568 assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource)); 00569 tmpreg = RCC->CFGR; 00570 /* Clear SW[1:0] bits */ 00571 tmpreg &= CFGR_SW_Mask; 00572 /* Set SW[1:0] bits according to RCC_SYSCLKSource value */ 00573 tmpreg |= RCC_SYSCLKSource; 00574 /* Store the new value */ 00575 RCC->CFGR = tmpreg; 00576 } 00577 00587 uint8_t RCC_GetSYSCLKSource(void) 00588 { 00589 return ((uint8_t)(RCC->CFGR & CFGR_SWS_Mask)); 00590 } 00591 00608 void RCC_HCLKConfig(uint32_t RCC_SYSCLK) 00609 { 00610 uint32_t tmpreg = 0; 00611 /* Check the parameters */ 00612 assert_param(IS_RCC_HCLK(RCC_SYSCLK)); 00613 tmpreg = RCC->CFGR; 00614 /* Clear HPRE[3:0] bits */ 00615 tmpreg &= CFGR_HPRE_Reset_Mask; 00616 /* Set HPRE[3:0] bits according to RCC_SYSCLK value */ 00617 tmpreg |= RCC_SYSCLK; 00618 /* Store the new value */ 00619 RCC->CFGR = tmpreg; 00620 } 00621 00634 void RCC_PCLK1Config(uint32_t RCC_HCLK) 00635 { 00636 uint32_t tmpreg = 0; 00637 /* Check the parameters */ 00638 assert_param(IS_RCC_PCLK(RCC_HCLK)); 00639 tmpreg = RCC->CFGR; 00640 /* Clear PPRE1[2:0] bits */ 00641 tmpreg &= CFGR_PPRE1_Reset_Mask; 00642 /* Set PPRE1[2:0] bits according to RCC_HCLK value */ 00643 tmpreg |= RCC_HCLK; 00644 /* Store the new value */ 00645 RCC->CFGR = tmpreg; 00646 } 00647 00660 void RCC_PCLK2Config(uint32_t RCC_HCLK) 00661 { 00662 uint32_t tmpreg = 0; 00663 /* Check the parameters */ 00664 assert_param(IS_RCC_PCLK(RCC_HCLK)); 00665 tmpreg = RCC->CFGR; 00666 /* Clear PPRE2[2:0] bits */ 00667 tmpreg &= CFGR_PPRE2_Reset_Mask; 00668 /* Set PPRE2[2:0] bits according to RCC_HCLK value */ 00669 tmpreg |= RCC_HCLK << 3; 00670 /* Store the new value */ 00671 RCC->CFGR = tmpreg; 00672 } 00673 00700 void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState) 00701 { 00702 /* Check the parameters */ 00703 assert_param(IS_RCC_IT(RCC_IT)); 00704 assert_param(IS_FUNCTIONAL_STATE(NewState)); 00705 if (NewState != DISABLE) 00706 { 00707 /* Perform Byte access to RCC_CIR bits to enable the selected interrupts */ 00708 *(__IO uint8_t *) CIR_BYTE2_ADDRESS |= RCC_IT; 00709 } 00710 else 00711 { 00712 /* Perform Byte access to RCC_CIR bits to disable the selected interrupts */ 00713 *(__IO uint8_t *) CIR_BYTE2_ADDRESS &= (uint8_t)~RCC_IT; 00714 } 00715 } 00716 00717 #ifndef STM32F10X_CL 00718 00728 void RCC_USBCLKConfig(uint32_t RCC_USBCLKSource) 00729 { 00730 /* Check the parameters */ 00731 assert_param(IS_RCC_USBCLK_SOURCE(RCC_USBCLKSource)); 00732 00733 *(__IO uint32_t *) CFGR_USBPRE_BB = RCC_USBCLKSource; 00734 } 00735 #else 00736 00746 void RCC_OTGFSCLKConfig(uint32_t RCC_OTGFSCLKSource) 00747 { 00748 /* Check the parameters */ 00749 assert_param(IS_RCC_OTGFSCLK_SOURCE(RCC_OTGFSCLKSource)); 00750 00751 *(__IO uint32_t *) CFGR_OTGFSPRE_BB = RCC_OTGFSCLKSource; 00752 } 00753 #endif /* STM32F10X_CL */ 00754 00766 void RCC_ADCCLKConfig(uint32_t RCC_PCLK2) 00767 { 00768 uint32_t tmpreg = 0; 00769 /* Check the parameters */ 00770 assert_param(IS_RCC_ADCCLK(RCC_PCLK2)); 00771 tmpreg = RCC->CFGR; 00772 /* Clear ADCPRE[1:0] bits */ 00773 tmpreg &= CFGR_ADCPRE_Reset_Mask; 00774 /* Set ADCPRE[1:0] bits according to RCC_PCLK2 value */ 00775 tmpreg |= RCC_PCLK2; 00776 /* Store the new value */ 00777 RCC->CFGR = tmpreg; 00778 } 00779 00780 #ifdef STM32F10X_CL 00781 00792 void RCC_I2S2CLKConfig(uint32_t RCC_I2S2CLKSource) 00793 { 00794 /* Check the parameters */ 00795 assert_param(IS_RCC_I2S2CLK_SOURCE(RCC_I2S2CLKSource)); 00796 00797 *(__IO uint32_t *) CFGR2_I2S2SRC_BB = RCC_I2S2CLKSource; 00798 } 00799 00811 void RCC_I2S3CLKConfig(uint32_t RCC_I2S3CLKSource) 00812 { 00813 /* Check the parameters */ 00814 assert_param(IS_RCC_I2S3CLK_SOURCE(RCC_I2S3CLKSource)); 00815 00816 *(__IO uint32_t *) CFGR2_I2S3SRC_BB = RCC_I2S3CLKSource; 00817 } 00818 #endif /* STM32F10X_CL */ 00819 00829 void RCC_LSEConfig(uint8_t RCC_LSE) 00830 { 00831 /* Check the parameters */ 00832 assert_param(IS_RCC_LSE(RCC_LSE)); 00833 /* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/ 00834 /* Reset LSEON bit */ 00835 *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_OFF; 00836 /* Reset LSEBYP bit */ 00837 *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_OFF; 00838 /* Configure LSE (RCC_LSE_OFF is already covered by the code section above) */ 00839 switch(RCC_LSE) 00840 { 00841 case RCC_LSE_ON: 00842 /* Set LSEON bit */ 00843 *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_ON; 00844 break; 00845 00846 case RCC_LSE_Bypass: 00847 /* Set LSEBYP and LSEON bits */ 00848 *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_Bypass | RCC_LSE_ON; 00849 break; 00850 00851 default: 00852 break; 00853 } 00854 } 00855 00862 void RCC_LSICmd(FunctionalState NewState) 00863 { 00864 /* Check the parameters */ 00865 assert_param(IS_FUNCTIONAL_STATE(NewState)); 00866 *(__IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState; 00867 } 00868 00879 void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource) 00880 { 00881 /* Check the parameters */ 00882 assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource)); 00883 /* Select the RTC clock source */ 00884 RCC->BDCR |= RCC_RTCCLKSource; 00885 } 00886 00893 void RCC_RTCCLKCmd(FunctionalState NewState) 00894 { 00895 /* Check the parameters */ 00896 assert_param(IS_FUNCTIONAL_STATE(NewState)); 00897 *(__IO uint32_t *) BDCR_RTCEN_BB = (uint32_t)NewState; 00898 } 00899 00908 void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks) 00909 { 00910 uint32_t tmp = 0, pllmull = 0, pllsource = 0, presc = 0; 00911 00912 #ifdef STM32F10X_CL 00913 uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0; 00914 #endif /* STM32F10X_CL */ 00915 00916 #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) 00917 uint32_t prediv1factor = 0; 00918 #endif 00919 00920 /* Get SYSCLK source -------------------------------------------------------*/ 00921 tmp = RCC->CFGR & CFGR_SWS_Mask; 00922 00923 switch (tmp) 00924 { 00925 case 0x00: /* HSI used as system clock */ 00926 RCC_Clocks->SYSCLK_Frequency = HSI_VALUE; 00927 break; 00928 case 0x04: /* HSE used as system clock */ 00929 RCC_Clocks->SYSCLK_Frequency = HSE_VALUE; 00930 break; 00931 case 0x08: /* PLL used as system clock */ 00932 00933 /* Get PLL clock source and multiplication factor ----------------------*/ 00934 pllmull = RCC->CFGR & CFGR_PLLMull_Mask; 00935 pllsource = RCC->CFGR & CFGR_PLLSRC_Mask; 00936 00937 #ifndef STM32F10X_CL 00938 pllmull = ( pllmull >> 18) + 2; 00939 00940 if (pllsource == 0x00) 00941 {/* HSI oscillator clock divided by 2 selected as PLL clock entry */ 00942 RCC_Clocks->SYSCLK_Frequency = (HSI_VALUE >> 1) * pllmull; 00943 } 00944 else 00945 { 00946 #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) 00947 prediv1factor = (RCC->CFGR2 & CFGR2_PREDIV1) + 1; 00948 /* HSE oscillator clock selected as PREDIV1 clock entry */ 00949 RCC_Clocks->SYSCLK_Frequency = (HSE_VALUE / prediv1factor) * pllmull; 00950 #else 00951 /* HSE selected as PLL clock entry */ 00952 if ((RCC->CFGR & CFGR_PLLXTPRE_Mask) != (uint32_t)RESET) 00953 {/* HSE oscillator clock divided by 2 */ 00954 RCC_Clocks->SYSCLK_Frequency = (HSE_VALUE >> 1) * pllmull; 00955 } 00956 else 00957 { 00958 RCC_Clocks->SYSCLK_Frequency = HSE_VALUE * pllmull; 00959 } 00960 #endif 00961 } 00962 #else 00963 pllmull = pllmull >> 18; 00964 00965 if (pllmull != 0x0D) 00966 { 00967 pllmull += 2; 00968 } 00969 else 00970 { /* PLL multiplication factor = PLL input clock * 6.5 */ 00971 pllmull = 13 / 2; 00972 } 00973 00974 if (pllsource == 0x00) 00975 {/* HSI oscillator clock divided by 2 selected as PLL clock entry */ 00976 RCC_Clocks->SYSCLK_Frequency = (HSI_VALUE >> 1) * pllmull; 00977 } 00978 else 00979 {/* PREDIV1 selected as PLL clock entry */ 00980 00981 /* Get PREDIV1 clock source and division factor */ 00982 prediv1source = RCC->CFGR2 & CFGR2_PREDIV1SRC; 00983 prediv1factor = (RCC->CFGR2 & CFGR2_PREDIV1) + 1; 00984 00985 if (prediv1source == 0) 00986 { /* HSE oscillator clock selected as PREDIV1 clock entry */ 00987 RCC_Clocks->SYSCLK_Frequency = (HSE_VALUE / prediv1factor) * pllmull; 00988 } 00989 else 00990 {/* PLL2 clock selected as PREDIV1 clock entry */ 00991 00992 /* Get PREDIV2 division factor and PLL2 multiplication factor */ 00993 prediv2factor = ((RCC->CFGR2 & CFGR2_PREDIV2) >> 4) + 1; 00994 pll2mull = ((RCC->CFGR2 & CFGR2_PLL2MUL) >> 8 ) + 2; 00995 RCC_Clocks->SYSCLK_Frequency = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; 00996 } 00997 } 00998 #endif /* STM32F10X_CL */ 00999 break; 01000 01001 default: 01002 RCC_Clocks->SYSCLK_Frequency = HSI_VALUE; 01003 break; 01004 } 01005 01006 /* Compute HCLK, PCLK1, PCLK2 and ADCCLK clocks frequencies ----------------*/ 01007 /* Get HCLK prescaler */ 01008 tmp = RCC->CFGR & CFGR_HPRE_Set_Mask; 01009 tmp = tmp >> 4; 01010 presc = APBAHBPrescTable[tmp]; 01011 /* HCLK clock frequency */ 01012 RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc; 01013 /* Get PCLK1 prescaler */ 01014 tmp = RCC->CFGR & CFGR_PPRE1_Set_Mask; 01015 tmp = tmp >> 8; 01016 presc = APBAHBPrescTable[tmp]; 01017 /* PCLK1 clock frequency */ 01018 RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc; 01019 /* Get PCLK2 prescaler */ 01020 tmp = RCC->CFGR & CFGR_PPRE2_Set_Mask; 01021 tmp = tmp >> 11; 01022 presc = APBAHBPrescTable[tmp]; 01023 /* PCLK2 clock frequency */ 01024 RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> presc; 01025 /* Get ADCCLK prescaler */ 01026 tmp = RCC->CFGR & CFGR_ADCPRE_Set_Mask; 01027 tmp = tmp >> 14; 01028 presc = ADCPrescTable[tmp]; 01029 /* ADCCLK clock frequency */ 01030 RCC_Clocks->ADCCLK_Frequency = RCC_Clocks->PCLK2_Frequency / presc; 01031 } 01032 01064 void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState) 01065 { 01066 /* Check the parameters */ 01067 assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph)); 01068 assert_param(IS_FUNCTIONAL_STATE(NewState)); 01069 01070 if (NewState != DISABLE) 01071 { 01072 RCC->AHBENR |= RCC_AHBPeriph; 01073 } 01074 else 01075 { 01076 RCC->AHBENR &= ~RCC_AHBPeriph; 01077 } 01078 } 01079 01095 void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState) 01096 { 01097 /* Check the parameters */ 01098 assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph)); 01099 assert_param(IS_FUNCTIONAL_STATE(NewState)); 01100 if (NewState != DISABLE) 01101 { 01102 RCC->APB2ENR |= RCC_APB2Periph; 01103 } 01104 else 01105 { 01106 RCC->APB2ENR &= ~RCC_APB2Periph; 01107 } 01108 } 01109 01126 void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState) 01127 { 01128 /* Check the parameters */ 01129 assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph)); 01130 assert_param(IS_FUNCTIONAL_STATE(NewState)); 01131 if (NewState != DISABLE) 01132 { 01133 RCC->APB1ENR |= RCC_APB1Periph; 01134 } 01135 else 01136 { 01137 RCC->APB1ENR &= ~RCC_APB1Periph; 01138 } 01139 } 01140 01141 #ifdef STM32F10X_CL 01142 01153 void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState) 01154 { 01155 /* Check the parameters */ 01156 assert_param(IS_RCC_AHB_PERIPH_RESET(RCC_AHBPeriph)); 01157 assert_param(IS_FUNCTIONAL_STATE(NewState)); 01158 01159 if (NewState != DISABLE) 01160 { 01161 RCC->AHBRSTR |= RCC_AHBPeriph; 01162 } 01163 else 01164 { 01165 RCC->AHBRSTR &= ~RCC_AHBPeriph; 01166 } 01167 } 01168 #endif /* STM32F10X_CL */ 01169 01185 void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState) 01186 { 01187 /* Check the parameters */ 01188 assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph)); 01189 assert_param(IS_FUNCTIONAL_STATE(NewState)); 01190 if (NewState != DISABLE) 01191 { 01192 RCC->APB2RSTR |= RCC_APB2Periph; 01193 } 01194 else 01195 { 01196 RCC->APB2RSTR &= ~RCC_APB2Periph; 01197 } 01198 } 01199 01216 void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState) 01217 { 01218 /* Check the parameters */ 01219 assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph)); 01220 assert_param(IS_FUNCTIONAL_STATE(NewState)); 01221 if (NewState != DISABLE) 01222 { 01223 RCC->APB1RSTR |= RCC_APB1Periph; 01224 } 01225 else 01226 { 01227 RCC->APB1RSTR &= ~RCC_APB1Periph; 01228 } 01229 } 01230 01237 void RCC_BackupResetCmd(FunctionalState NewState) 01238 { 01239 /* Check the parameters */ 01240 assert_param(IS_FUNCTIONAL_STATE(NewState)); 01241 *(__IO uint32_t *) BDCR_BDRST_BB = (uint32_t)NewState; 01242 } 01243 01250 void RCC_ClockSecuritySystemCmd(FunctionalState NewState) 01251 { 01252 /* Check the parameters */ 01253 assert_param(IS_FUNCTIONAL_STATE(NewState)); 01254 *(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState; 01255 } 01256 01282 void RCC_MCOConfig(uint8_t RCC_MCO) 01283 { 01284 /* Check the parameters */ 01285 assert_param(IS_RCC_MCO(RCC_MCO)); 01286 01287 /* Perform Byte access to MCO bits to select the MCO source */ 01288 *(__IO uint8_t *) CFGR_BYTE4_ADDRESS = RCC_MCO; 01289 } 01290 01326 FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG) 01327 { 01328 uint32_t tmp = 0; 01329 uint32_t statusreg = 0; 01330 FlagStatus bitstatus = RESET; 01331 /* Check the parameters */ 01332 assert_param(IS_RCC_FLAG(RCC_FLAG)); 01333 01334 /* Get the RCC register index */ 01335 tmp = RCC_FLAG >> 5; 01336 if (tmp == 1) /* The flag to check is in CR register */ 01337 { 01338 statusreg = RCC->CR; 01339 } 01340 else if (tmp == 2) /* The flag to check is in BDCR register */ 01341 { 01342 statusreg = RCC->BDCR; 01343 } 01344 else /* The flag to check is in CSR register */ 01345 { 01346 statusreg = RCC->CSR; 01347 } 01348 01349 /* Get the flag position */ 01350 tmp = RCC_FLAG & FLAG_Mask; 01351 if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET) 01352 { 01353 bitstatus = SET; 01354 } 01355 else 01356 { 01357 bitstatus = RESET; 01358 } 01359 01360 /* Return the flag status */ 01361 return bitstatus; 01362 } 01363 01371 void RCC_ClearFlag(void) 01372 { 01373 /* Set RMVF bit to clear the reset flags */ 01374 RCC->CSR |= CSR_RMVF_Set; 01375 } 01376 01402 ITStatus RCC_GetITStatus(uint8_t RCC_IT) 01403 { 01404 ITStatus bitstatus = RESET; 01405 /* Check the parameters */ 01406 assert_param(IS_RCC_GET_IT(RCC_IT)); 01407 01408 /* Check the status of the specified RCC interrupt */ 01409 if ((RCC->CIR & RCC_IT) != (uint32_t)RESET) 01410 { 01411 bitstatus = SET; 01412 } 01413 else 01414 { 01415 bitstatus = RESET; 01416 } 01417 01418 /* Return the RCC_IT status */ 01419 return bitstatus; 01420 } 01421 01448 void RCC_ClearITPendingBit(uint8_t RCC_IT) 01449 { 01450 /* Check the parameters */ 01451 assert_param(IS_RCC_CLEAR_IT(RCC_IT)); 01452 01453 /* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt 01454 pending bits */ 01455 *(__IO uint8_t *) CIR_BYTE3_ADDRESS = RCC_IT; 01456 } 01457 01470 /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/